direct product, non-abelian, soluble, monomial
Aliases: C22×C3.S4, C23⋊D18, C24⋊2D9, C3.A4⋊C23, C3.(C22×S4), C6.27(C2×S4), (C2×C6).13S4, C22⋊(C22×D9), (C23×C6).4S3, (C22×C6).18D6, (C2×C3.A4)⋊C22, (C2×C6).(C22×S3), (C22×C3.A4)⋊3C2, SmallGroup(288,835)
Series: Derived ►Chief ►Lower central ►Upper central
C3.A4 — C22×C3.S4 |
Generators and relations for C22×C3.S4
G = < a,b,c,d,e,f,g | a2=b2=c3=d2=e2=g2=1, f3=c, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, gcg=c-1, fdf-1=gdg=de=ed, fef-1=d, eg=ge, gfg=c-1f2 >
Subgroups: 1306 in 230 conjugacy classes, 36 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C23, C9, Dic3, D6, C2×C6, C2×C6, C22×C4, C2×D4, C24, C24, D9, C18, C2×Dic3, C3⋊D4, C22×S3, C22×C6, C22×C6, C22×D4, C3.A4, D18, C2×C18, C22×Dic3, C2×C3⋊D4, S3×C23, C23×C6, C3.S4, C2×C3.A4, C22×D9, C22×C3⋊D4, C2×C3.S4, C22×C3.A4, C22×C3.S4
Quotients: C1, C2, C22, S3, C23, D6, D9, S4, C22×S3, D18, C2×S4, C3.S4, C22×D9, C22×S4, C2×C3.S4, C22×C3.S4
(1 15)(2 16)(3 17)(4 18)(5 10)(6 11)(7 12)(8 13)(9 14)(19 34)(20 35)(21 36)(22 28)(23 29)(24 30)(25 31)(26 32)(27 33)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 19)(8 20)(9 21)(10 32)(11 33)(12 34)(13 35)(14 36)(15 28)(16 29)(17 30)(18 31)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)
(1 22)(2 23)(4 25)(5 26)(7 19)(8 20)(10 32)(12 34)(13 35)(15 28)(16 29)(18 31)
(2 23)(3 24)(5 26)(6 27)(8 20)(9 21)(10 32)(11 33)(13 35)(14 36)(16 29)(17 30)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 22)(2 21)(3 20)(4 19)(5 27)(6 26)(7 25)(8 24)(9 23)(10 33)(11 32)(12 31)(13 30)(14 29)(15 28)(16 36)(17 35)(18 34)
G:=sub<Sym(36)| (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(19,34)(20,35)(21,36)(22,28)(23,29)(24,30)(25,31)(26,32)(27,33), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,19)(8,20)(9,21)(10,32)(11,33)(12,34)(13,35)(14,36)(15,28)(16,29)(17,30)(18,31), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,22)(2,23)(4,25)(5,26)(7,19)(8,20)(10,32)(12,34)(13,35)(15,28)(16,29)(18,31), (2,23)(3,24)(5,26)(6,27)(8,20)(9,21)(10,32)(11,33)(13,35)(14,36)(16,29)(17,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,36)(17,35)(18,34)>;
G:=Group( (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(19,34)(20,35)(21,36)(22,28)(23,29)(24,30)(25,31)(26,32)(27,33), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,19)(8,20)(9,21)(10,32)(11,33)(12,34)(13,35)(14,36)(15,28)(16,29)(17,30)(18,31), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36), (1,22)(2,23)(4,25)(5,26)(7,19)(8,20)(10,32)(12,34)(13,35)(15,28)(16,29)(18,31), (2,23)(3,24)(5,26)(6,27)(8,20)(9,21)(10,32)(11,33)(13,35)(14,36)(16,29)(17,30), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,22)(2,21)(3,20)(4,19)(5,27)(6,26)(7,25)(8,24)(9,23)(10,33)(11,32)(12,31)(13,30)(14,29)(15,28)(16,36)(17,35)(18,34) );
G=PermutationGroup([[(1,15),(2,16),(3,17),(4,18),(5,10),(6,11),(7,12),(8,13),(9,14),(19,34),(20,35),(21,36),(22,28),(23,29),(24,30),(25,31),(26,32),(27,33)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,19),(8,20),(9,21),(10,32),(11,33),(12,34),(13,35),(14,36),(15,28),(16,29),(17,30),(18,31)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36)], [(1,22),(2,23),(4,25),(5,26),(7,19),(8,20),(10,32),(12,34),(13,35),(15,28),(16,29),(18,31)], [(2,23),(3,24),(5,26),(6,27),(8,20),(9,21),(10,32),(11,33),(13,35),(14,36),(16,29),(17,30)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,22),(2,21),(3,20),(4,19),(5,27),(6,26),(7,25),(8,24),(9,23),(10,33),(11,32),(12,31),(13,30),(14,29),(15,28),(16,36),(17,35),(18,34)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 9A | 9B | 9C | 18A | ··· | 18I |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | 9 | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 18 | 18 | 18 | 18 | 2 | 18 | 18 | 18 | 18 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | ··· | 8 |
36 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D6 | D9 | D18 | S4 | C2×S4 | C3.S4 | C2×C3.S4 |
kernel | C22×C3.S4 | C2×C3.S4 | C22×C3.A4 | C23×C6 | C22×C6 | C24 | C23 | C2×C6 | C6 | C22 | C2 |
# reps | 1 | 6 | 1 | 1 | 3 | 3 | 9 | 2 | 6 | 1 | 3 |
Matrix representation of C22×C3.S4 ►in GL7(𝔽37)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
36 | 36 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
31 | 20 | 0 | 0 | 0 | 0 | 0 |
17 | 11 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 1 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 |
36 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
G:=sub<GL(7,GF(37))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[36,1,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,1],[31,17,0,0,0,0,0,20,11,0,0,0,0,0,0,0,36,36,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,36,0,0,0,0,1,0,0],[36,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36] >;
C22×C3.S4 in GAP, Magma, Sage, TeX
C_2^2\times C_3.S_4
% in TeX
G:=Group("C2^2xC3.S4");
// GroupNames label
G:=SmallGroup(288,835);
// by ID
G=gap.SmallGroup(288,835);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-3,-2,2,1123,192,1684,6053,782,3534,1350]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^3=d^2=e^2=g^2=1,f^3=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,g*c*g=c^-1,f*d*f^-1=g*d*g=d*e=e*d,f*e*f^-1=d,e*g=g*e,g*f*g=c^-1*f^2>;
// generators/relations